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As Professor of Mathematics at the Free University, Cor Baayen was an
inspiring teacher. His lectures were lucid and skilful, and his broad knowledge
enabled him to exhibit the students unexpected vistas and panoramas through
several areas in mathematics and theoretical computer science, with topology,
set theory, discrete mathematics, logic, and computability as landmarks. As a
student you learned that everything is related to everything.

Another characteristic of Cor Baayen’s lectures was that he always was eager
to present courses on ‘modern’ topics in mathematics — modern in the sense ot
not belonging to the standard student curriculum in mathematics (many still
don’t belong to it). Thus we learned about boolean algebras, graphs, modal
logic, proof theory, recursion theory, computability, etc. At the same time there
was a strong interest in the historical side of the results discussed.

The courses of Cor Baayen (and his oral examinations, which generally out-
growed to private lessons of at least three hours) being stimulating, he added a
personal touch by inviting students from their first year at his home, for further
metamathematical background. He has stimulated the enthusiasm of several
students for mathematics and for doing research.

I think it appropriate not to restrict myself in this paper to one area, but
rather to try to link some of the areas of Cor Baayen’s interest, by a ramble
through topology, discrete mathematics, and algorithmics, with due attention

to the historical roots and to some connections with a tew of the other interests
of Cor Baayen.

1. Roots of topology. It seems that Leibniz was one of the first interested

in topology, or what he called geometria situs. In 1679 he wrote in a letter to
Christiaan Huygens:

. mais apres tous les progres que j’ay faits en ces matieres, je ne suis
pas encor content de I’Algebre, en ce qu’elle ne donne ny les plus cour-
tes voyes, ny les plus belles constructions de Geometrie. C’est pourquoy
lorsqu’il s’agit de cela, je croy qu’il nous faut encor une autre analyse
proprement geometrique ou lineaire qui nous exprime directement situm,
comme I’Algebre exprime magnitudinem. Et je croy d’en voir le moyen et
qu’on pourrait representer des figures et mesme des machines et mouve-
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mens en caracteres, comme I’ Algebre represente les nombres ou grandeurs:
et je vous envoye un essay qui me paroist considerable.

According to Listing, in his Vorstudien zur Topologie of 1847 [37|, this was the

first idea of a scientific and ‘calculatory’ elaboration of the modal side of the
geometry,

in welchen von einer Art Algorithmus die Rede ist, womit man die
Lage raumlicher Gebilde eben so der Analyse unterwerfen musste, wie es
hinsichtlich der Grosse mittelst der Algebra geschieht.

(The essay referred to by Leibniz is following Listing not of ‘eigentlich modalen
Inhalts’.)

Listing also mentions work by Euler and others on ‘die bekannte Aufgabe des
sogenannten Rosselsprungs’, by Vandermonde on the route by which a thread
should go in order to represent for instance a braid or a garter of the weave of
a stocking, and by Clausen on the smallest number of penstrokes with which a
given figure can be drawn.

Listing, a student of Gauss, says that except for this, the modal side of
geometry has ‘to expect its elaboration and development almost completely from
the future’. As reasons for the fact that since Leibniz not much has been done
on the topic, Listing mentions the complexity of discovering effective methods
to reduce spatial intuition to concepts, and the inadequacy of language for
describing scientifically these, often highly entangled, concepts.

Listing does not claim that he had performed this hard job, and therefore he
calls his treatise Vorstudien zur Topologie, thereby coining the name topology:

Es mag erlaubt sein, fiir diese Art Untersuchungen raumlicher Gebilde
den Namen “Topologie” zu gebrauchen statt der von Leibniz vorgeschla-
genen Benennung “geometria situs”, welche an den Begriff des Masses,
der hier ganz untergeordnet ist, erinnert, und mit dem bereits fur eine an-
dere Art geometrischer Betrachtungen gebrauchlich gewordenen Namen
“séométrie de position” collidirt. Unter der Topologie soll also die Lehre
von den modalen Verhaltnissen raumlicher Gebilde verstanden werden,
oder von den Gesetzen des Zusammenhangs, der gegenseitigen Lage und
der Aufeinanderfolge von Punkten, Linien, Flachen, Korpern und ihren

Theilen oder ihren Aggregaten im Raume, abgesehen von den Mass- und
Grossenverhaltnissen.

Listing discusses how several spatial configurations could be represented by a
calculus. In particular he focuses on the orientation of objects, and on how
one can use his observations when looking through the micro- or telescope,
especially when also mirrors are involved. Moreover, he considers dextro- and
laevorotation of screws, springs, ropes, spiral staircases, snail’s shells, and stalks.

Listing finds that it is difficult to describe the orientation of objects by
words, claiming the inadequacy of the description of dextro- and laevorotatory
in Linnaeus’ Philosophia Botanica (1751):
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Den Ausdruck caulis volubilis namlich erklart Linné so: spiraliter
adscendensperramumalienum und zwar sinistrorsum (() se-
cundum solem vulgo, e.g. Humulus, Lonicera cet.; dextror-
sum ()) contra motum solis vulgi e.g. Convolvulus, Phase-
olus, cet. Bei der Intorsio wiederholt er diese Bestimmung und stellt sie
mit den Windungstypen am Cirrhus, an der Corolla und anderen Organen
zusammen. In einer Anmerkung hierzu gibt nun Linné seine Definition
von sinlistrorsum und dextrorsum, welche spater — zum Theil aus
Anlass des dabei vorgefallenen Druckfehlers — die verschiedensten Ex-
egesen erfahren hat. Linné setzt fest: sinistrorsum hoc est, quod
respicit dextram, si ponas Te ipsum, in centro constitu-
tum, meridiem adspicere; dextrorsum itaque contrarium,
und erklart damit, dass er die nach der rechten Seite eines im Centrum ste-
hende Beobachters hervorragenden Blumenblatter als Kennzeichen einer
links gewundenen Corolla angesehen wissen wolle, und vice versa. Das
meridiem adspicere ist in der concreten Sprache Linné’s nicht sowohl ein
uberflussiger, als vielmehr ein pragnanter Ausdruck fiir die aufrechte Stel-
lung des mitten in der Blume gedachten Beobachters, der das Gesicht nach
einem bestimmten Punkte des Horizonts kehren soll — versteht sich, den
Scheitel nach oben gerichtet. Freilich bleibt bei diesen Erklarungen in
topologischer Hinsicht manches zu erganzen, manches zu fragen tbrig.

Studying orientation brings Listing to knots. (A knot is a

/ simple closed curve in R®.) They were considered before
/ by Gauss in computing inductance in a system of linked
Figure 1 circular wires. Listing introduced a (now standard) planar

representation of crossings, as in Figure 1.

Eine Kreuzung dieser Art, wobei sich nach angegebener Weise in der Pro-
jection oder Zeichnung der uberliegende von dem untenliegenden Faden
durch den blossen Anblick leicht unterscheiden lasst, nennen wir eine Ue-
berkreuzung im Gegensatz zur Durchkreuzung, wo ein wirklicher Durch-
schnittspunkt im Raume stattfindet, und die eben gedachte Entfernung
beider Faden bei K entweder Null ist, oder wenigstens als verschwindend
betrachtet wird. Zwei Wege konnen demnach, wie beim gewdhnlichen
Kreuzwege, einander durchkreuzen, oder aber, wie diess in manchen Stadt-
en und beil vielen Kreuzungen zwischen Eisenbahnen und anderen Fahr-
strassen der Fall ist, einander uberkreuzen.

He also introduces a calculus with A (for laeotrop) and é (for dexiotrop) in-
dicating the corners at the crossing as in Figure 2, claiming that this signing
will facilitate an algorithmic discussion (‘wie sie ihres Ortes
\ 5{ gefiihrt werden muss’) of the equivalence of knots.
/ 5 Without proof Listing states that the number of cross-
Figure 2 ings in the trefoil knots (Figure 3) cannot be decreased, and
that the two knots in the figure are not equivalent.
In particular, Listing was interested in knots in which each face of the pro-
jection is ‘monotype’ — that is, contains either only A or only . Such knots are

495



now known as alternating knots — indeed, when
following the knot one goes alternatingly over and
@ ® under. The type-symbol assigned to such knots is
- for instance 6° + 362, A% + 2)\3 + 2)?, indicating
that there is 1 6-face with 5 edges, 3 é-faces with
Figure 3 3 edges each, 1 A-face with 4 crossings, 2 A-faces

with 3 edges each, and 2 A-faces with 2 edges each.

Clearly, the A6 type-symbol is an invariant under the trivial operations on
the diagram: rerouting an edge through the unbounded face, and mirroring
the diagram, while interchanging ‘up’ and ‘down’ at each crossing. However,

Listing realizes that the A6 type-symbol

| _ does not give an invariant for alternat-

LJ Ing knots — he gives an example of two

S m equivalent alternating knots (Figure 4)
C\-—b k that have different A6 type-symbols.

Interesting is that Listing mentions

as one of the further applications of to-

pology, beside natural sciences and art, also the area of industrial mechanics,

for which Listing refers to the work of the computer pioneer Charles Babbage
4] on representing machine movements by symbols.

Figure 4

2. Tait and knots. Independently of Listing, P.G. Tait studied knots. He was
interested in knots because of the ‘vortex atom’ model invented by his friend,
the physicist W. Thomson (later Lord Kelvin), like Tait of Scottish origin.

Tait had a broad scientific interest in mathematics, physics and other dis-
ciplines, and published papers and notes on electrodynamics, magnetism, the
molecular arrangement in crystals, determinants, quaternions, thermodynam-
ics, the value of the Edinburgh Degree of M.A., the fecundity and fertility of
women, earth rotation, comets, fluid dynamics, partial differential equations,
spectral analysis, thermoelectricity, the retina, the pendulum motion, combina-
torics, viscocity, integral calculus, sound and music, the double rainbow, thun-
derstorms, and the pace of a golt ball.

Studies of curves in the plane led him to investigating the four-colour prob-
lem, and he also applied them to knots. In a paper presented to the British
Association in 1876, Tait [66] observed that the cells of a plane closed curve can
be coloured black and white so that adjacent cells have different colours. He
finishes by remarking:

The development of this subject promises absolutely endless work — but
work of a very interesting and useful kind — because it is intimately
connected with the theory of knots, which (especially applied in Sir W.
Thomson’s Theory of Vorter Atoms) is likely soon to become an important
branch of mathematics.

In the theory of ‘vortex atoms’ of Thomson [72], the internal coherence of atoms
was assumed to be determined by a knot, or rather a link (a disjoint union of
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knots), connecting the different indivisible parts of the atom, the ‘vortex tubes’
(a theory soon abandoned by Thomson). By classifying knots, Tait hoped to

shed light on the periodic table of elements.

In a note communicated to the Royal Society of Edinburgh on 18 Decem-

Figure 5
be decomposed

among all knots

ber 1876, Tait [61| observed that any closed curve in
: . _ the plane gives an alternating knot, just by going al-
ternatingly over and under.
such an alternating knot is reduced, that 1s, cannot
as in Figure 5, then it has a minimum number of crossings
equivalent to it; that is, ‘cannot have the number of crossings

He conjectures that if

reduced b - any possible deformation.” As a motivation for considering alternat-

ing knots, Tait
in woodcuts of Durer.
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“I am indebted to Mr Dallas for a photograph of a
remarkable engraving by Durer, exhibiting a very
complex but symmetrical linkage, in which this
alternation is maintained throughout.” (Tait |65

mentioned that they occur on various sculptured stones and

After having presented
his subsequent ‘Note on the
Measure of Beknottedness’

Tait [62]), Tait’s attention
was drawn by the physicist
.C. Maxwell (also Scottish
to Listing’s Vorstudien zur
Topologie, which Tait next
studied with great enthu-
siasm, calling it an ‘extre-
mely valuable, but too brief,
Essay’.

It made Tait aware of
the fact that there exist al
ternating knots that are e-
quivalent but cannot be ob-
tained from each other by
trivial operations, as they
have different A6 type-sym-

ols. In fact, in {63| he sta-
tes that the sole point of
Listing’s paper which (as far
as knots are concerned ) was
thoroughly new to Tait —
‘though not unexpected’ —
was an operation that Tait
extracted from Listing’s as-
sertion that the knots in Fig-
ure 4 are equivalent.

The operation transforms one alternating knot into another. To apply 1t, one
needs to decompose the knot into two blocks as in the first picture in Figure



6. Then one of the blocks is rotated 180°, as indicated in the second picture

of Figure 6. Later, Tait called this operation flyping. Note that also the trivial
operations can be obtained as the result of a series of flypings.
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Figure 6

The new operation made Tait conclude that the classification of knots 1is
much more difficult than Tait initially thought,

and it is so because the number of really distinct species of each order 1s
very much less than I was prepared to find it.

It made him plan to give up the whole area of knots, as the note ends with:

And here I am glad to leave it, for at this stage it is entirely out of my
usual sphere of work, and it has already occupied too much of my time.

But saying farewell to knots is not that easy, and Tait’s abstinence was
of very short duration. In the same ‘Session 1876-77’ of the Royal Society of
Edinburgh he published five more notes on knots and links, including one on
‘Sevenfold Knottiness’ [64]. In this paper, the reduced alternating knots with
seven crossings are classified. This may be considered as the root of ‘Tait’s
flyping conjecture’ (although in [64] the term ‘flyping’ is not used yet).

In his classification, the equivalence of knots is derived by applying only
flyping (including the trivial operations). On the other hand, Tait seemed to
have only intuitive means of showing that certain knots are nonequivalent — at
least, he does not describe in his paper why certain knots are nonequivalent. So
Tait assumed without proof that equivalence of alternating knots is completely
determined by flyping. Therefore one may say that Tait conjectured:

Tait’s flyping conjecture. Two reduced alternating knots are equivalent if
and only if they can be obtained from each other by a series of flypings.

Tait was aware of the fact that he did not yet have a way of proving nonequiv-
alence of knots, as in [68| he wrote:

. and thus, though I have grouped together many widely different but
equivalent forms, I cannot be absolutely certain that all those groups are
essentially different one from another.

Tait’s big article ‘On knots’ [65] seems the first in which he uses the term
flyping:
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The deformation process is, in fact, one of flyping, an excellent word,
very inadequately represented by the nearest equivalent English phrase
“turning outside in”.

Although it seems that he restricted the term for turning a knot completely
upside down, earlier in the paper the operation of Figure 6 was mentioned:

... this process ... gets rid of a crossing at one place only by introducing
it at another. It will be seen later that this process may in certain cases
be employed to change the scheme of a knot, ...

Moreover, in a later paper, Tait [67] speaks of ‘lyping of individual parts’ of
a knot, thereby indicating that the general operation described above indeed
should be called flyping.

The word ‘flype’ is old Scottish and means according to The Concise Scots
Dictionary: ‘fold back; turn wholly or partially inside out; tear off (the skin)
in strips, peel’. A Dictionary of the Older Scottish Tongue, from the Twelfth
Century to the End of the Seventeenth has as lemma:

Flyp(e, v. [em.E. and ME. flype (c. 1400), of obscure origin; current in
later Sc. and northern Eng. dialects.] tr. To fold back; to turn outwards.
Thare laithlie lyning furthwart flypit; LYND. Syde Taillis 97. Ane pair of wyd
slevis of arming flypand bakward; 1561 Inv. Wardrobe 128. Sum flyrand, thair

phisnomeis thai flyp [v.r. flipe]; MONTG. Flyt. 510 (T). I used often to flype up
the lids of my eyes; Row 452.

The Scottish National Dictionary, designed partly on regional lines and partly
on historical principles, and containing all the Scottish words known to be in
use or to have been in use since c¢. 1700 gives among other the following usage:

Sc. 1896 Stevenson W. of Hermaston vi.:
“Miss Christina, if you please, Mr. Weir!” says I, and just flyped up my
skirt tails.

Sc. 1721 J. Kelly Proverbs 218:

I will sooner see you fleip-ey’d, like a French Cat. A disdainful rejecting
of an unworthy Proposal; spoken by bold Maids to the vile offers of young
Fellows.

In a discussion of Listing’s Vorstudien, Tait [67] describes flyping as follows:

When we flype a glove (as in taking it very wet, or as we skin a hare),
we perform an operation which (not describable in English by any shorter
phrase than “turning outside in”) changes it character from a right-hand
glove to a left. A pair of trousers or a so-called reversible waterproot coat
is, after this operation has been transformed, still a pair of trousers or
a coat, but the legs or arms are interchanged; unless the garments, like

those of “Paddius & Corko”, are buttoned behind.

The processes described by (Peter) Tait and the vocabulary introduced by him
inspired the physicist (Jack) Maxwell to the following poem:
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(CATS) CRADLE SONG
By a Babe in Knots.

Peter the Repeater
Platted round a platter
Slips of silvered paper
Basting them with batter.

Flype ’em, slit ’em, twist ’em,
Lop-looped laps of paper;
Setting out the system

By the bones of Neper.

Clear your coil of kinkings
Into pertect plaiting,
Locking loops and linkings
Interpenetrating.

Why should a man benighted,
Beduped, betooled, besotted,
Call knotful knittings plighted,
Not knotty but beknotted?

It’s monstruous, horrid, shocking,
Beyond the power of thinking,
Not to know, interlocking

Is no mere form of linking.

But little Jacky Horner,
Will teach you what is proper,

| So pitch him, in his corner,

Your silver and your copper.

Tait [65] also introduced a convenient auxiliary graphical representation of
knot and link diagrams (more generally, sets of closed curves) in the plane.
Colour the faces of a link diagram K black and white, so that adjacent faces
have different colours, and so that the unbounded face has colour white. Now
put a point in each of the black faces. If any two black faces f, f' are
adja cent to a common crossing, draw a line
connecting the points in f and f’ — cf. Figure
7. In this way we obtain a plane graph Hp,
that uniquely determines the projection of the
link diagram K, at least combinatorially. If
the link diagram is alternating, we can recon-
struct it from H g (after adopting a convention
on whether each black face corresponds to a
dexiotrop or a laeotrop face of the link). We
thus obtain an equivalence of combinatorial questions on alternating knots and
on plane graphs.

3. Work on Tait’s conjectures. Since the work of Listing and Tait, the
study of knots has come to great flourishing. Work on distinguishing knots by
polynomial invariants (including the well-known Jones polynomial), the connec-
tions to mathematical physics, and the applications for instance to DNA have
contributed to that. Especially, the work on polynomials has made it possible
to prove the nonequivalence of several pairs of knots.

In this ramble I just want to restrict myself to some of the work done on
Tait’s conjectures. Using the Jones polynomial, Kauffman [27], Murasugi [43],
and Thistlethwaite [69] were able to show Tait’s conjecture that a reduced alter-

nating link diagram attains a minimum number of crossings, taken over all (not
necessarily alternating) links equivalent to it. In particular, any two equivalent
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reduced alternating links have the same number of crossings.

A special case of Tait’s flyping conjecture was considered in [57]. Call a link
diagram K well-connected if it does not have a nontrivial cut
that crosses the diagram in at most four curves only. That is,
for any decomposition of the diagram as in Figure &8, one of the

Figure 8 blocks should contain at most one crossing.

For a well-connected alternating link diagram, flyping clearly loses most of

its lustre. For well-connected links Tait’s flyping conjecture reduces to:

Theorem 1. Let K and K' be links with well-connected alternating diagrams.

Then K and K' are equivalent if and only if the diagrams arise from each other
by trivial operations.

Meantime, Menasco and Thistlethwaite [39] have announced a proof of Tait’s
flyping conjecture in full generality.

We sketch some elements of the proofs. Let K and K’ be two links, with
reduced alternating diagrams. We must show that if K and K’ are equivalent,
then their diagrams arise from each other by a series of flypings. In both proofs,
surfaces are introduced to trace the movements when transforming K’ to K.

Let K be an alternating link, with link diagram having a dextrotrop un-
bounded face. Then the compact bordered surface g is ‘the’ surface with
boundary K and with projection equal to the closure of the union of the laeotrop
faces. A pictorial impression is given in Figure 9.

Now note that if we move link K’ to
link K, there will be two surfaces with
boundary K': first the surface X g asso-
ciated with K'; second the transformed
surface 7(Xg+), where 7 : §° — §3
describes the isotopy bringing K’ to K.
Thus the surface 7(¥X /) in a way bears
b . ~_ the ‘history’ of moving K’ to K.
B There are some parameters of com-

pact bordered surfaces that remain in-
varlant under 1sotopy. First, the Euler characteristic is an invariant. A second
parameter 1nvariant under isotopy is the twisting number, which is about the
number of twists one makes when driving on the surface, close to the boundary,
like on a roller coaster (added up over all boundaries).

Now one can show that if K is a link with well-connected alternating dia-
gram and if 3 is any compact bordered surface with boundary K and with the
same FEuler characteristic and twisting number as Y g, then there is an isotopy
bringing 2. to X k.

This directly gives, for any two equivalent links K and K’ with well-connected
alternating diagrams, that there is an isotopy bringing Y g+ to X . Indeed, for
this it suffices to show that Y x and ¥ x+ have the same Euler characteristic
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and the same twisting number. This follows directly from earlier results on the
invariance of the number of black faces and of the ‘writhe’ of a link (Murasugi
(44}, Thistlethwaite [70], [71]).

Finally, to finish the proof of Theorem 1, one has for links K and K " with
well-connected alternating diagrams: if there is an isotopy bringing >/ to 2,
then the diagrams arise from each other by trivial operations. This fact 1s
proved by showing that if ¥ and ¥ are isotopic, then the cycle spaces of Hg
and Hy. form isomorphic matroids. This is shown by comparing the twisting
numbers of circuits in X g and 2 k.

Hence, by a theorem of Whitney [76], Hx and Hg' are the same up to
trivial operations (note that these plane graphs are 3-connected by the well-
connectedness of the diagrams). This gives that the diagrams are the same
up to trivial operations, and thus we have Tait’s flyping conjecture for well-
connected links.

" The proof of the full Tait flyping conjecture as announced by Menasco and
Thistlethwaite [39] makes a more extensive use of invariants, including polyno-
mial invariants, and applies them simultaneaously to the surface Xk and to the

surface ¥/, obtained similarly as £ x but with respect to the dextrotrop faces
(assuming the link diagram being on the 2-sphere).

4. Reidemeister moves. A basis of representing a knot by its diagram is that
never more than two points of a knot project to the same point in the plane,
and if two points have the same projection, it is a crossing. By this one does
not lose generality.

Reidemeister [48] observed that this principle can be extended. If one con-
siders the isotopic move of a knot, one has a fourth dimension, the time. Then
one may assume that the move is so that at any fixed moment not more than
three points of the knot project to the same point in the plane, and if three
points have the same projection, they pairwise cross.

Further analysis led Reidemeister to showing that if two links are equivalent,

then their diagrams can be moved to each other by a series of simple operations,
called Reidemeister mowves:

(1) type I: replacing 9 by m\, and conversely;

type 1I: replacing /LN by =, and conversely;

: —~ —
type III: replacing ,\/\: by \(\-

(In Reidemeister’s book Knotentheorie [49], these operations are called 2.1, §2.2,
and €2.3.)

It enables to study knot equivalence just by diagrams, and it reduces knot
equivalence to a combinatorial question. Most of the knot polynomials have been

shown to be invariant by showing that they are invariant under the Reidemeister
INoves.
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On the other hand, Reidemeister moves do not imply a finite algorithm to
test if two given knots are equivalent. There is no upper bound known (expressed
in the number of crossings of the knots) for the number of Reidemeister moves to
be made to transform one knot to another, equivalent, knot. Equivalently, there
is no upper bound known for the maximum number of crossings at intermediate
diagrams when transforming two equivalent knots to each other by Reidemeister
Imoves.

Consider next a closed curve in the plane, like 1n
Figure 10, assuming that there are only a finite num-
ber of double points, each being a crossing of two
curve parts. It is quite trivial to show that 1t can
be unwrapped to a simple closed curve by a series

of the following operations — which are also called
Figure 10 Reidemeister moves:
(2) type I: replacing Q by .~ , and conversely;
type II: replacing -~ by - , and conversely;

type I1I: replacing ./ by /. .

Next it is an easy exercise to show something stronger: in transforming a
plane closed curve to a simple curve we can restrict the Reidemeister moves to
those not increasing the number of crossings. That is, the Reidemeister moves
of types I and II are only applied from left to right in (2). A similar statement
holds when transforming a system of plane closed curves to a system of pairwise

disjoint simple closed curves, except that we should add a Reidemeister move
of type O:

(3) type 0: replacing - by -~ .

(Using the analogy between a system K of plane closed curves and the plane
graph Hy as introduced by Tait (see Figure 7), one can derive from this the
result of Griitnbaum [23] that each plane graph can be obtained from the empty
graph by a series of the following operations: (i) adding a new vertex, possibly
connected by a new edge to an existing vertex; (ii) adding a new edge parallel
to an existing edge; (iii) adding a new vertex in the ‘midst’ of an existing edge;
(iv) “YA’, that is, replacing a vertex v of degree 3, and the three edges incident
with v, by a triangle connecting the three vertices adjacent to v; (v) ‘AY’, that
is, the operation reverse to (iv).)

If we have a closed curve C on a compact surface S it is clear that in general
one cannot make it simple by Reidemeister moves. The best one may hope for
is to reduce the number of crossings to the minimum number of crossings taken
over all closed curves freely homotopic to C.

That is, define
(4) mincr(C) := min{cr(C’)|C’ freely homotopic to C'}.
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Here cr(C’) denotes the number of selfcrossings of C’, counting multiplicities.
Two closed curves C,C' : S — S are freely homotopic, in notation C ~ C", if
there exists a continuous function ® : S x [0,1] — S such that ®(z,0) = C(z)
and ®(z,1) = C’'(z) for each z € S'.

Call C minimally crossing if cr(C) = mincr(C). Then it is shown in [22] that
each closed curve C can be transformed to a minimally crossing closed curve by
Reidemeister moves, without increasing the number of crossings throughout the
moves.

This holds more generally for systems of closed curves. To this end define
for closed curves C and D on 5:

(5) mincr(C, D) := min{cr(C’,D’)|C" ~ C,D" ~ D}.

Here cr(C’, D') is the number of crossings of C’ and D’, counting multiplicities.
A system C1q,...,C of closed curves on S is called minimally crossing if each
C; is minimally crossing and if cr(C;, C;) = mincr(C;, C;) for all 72 # j.

Then the following is proved in [22]:

Theorem 2. Any system of closed curves on a surface can be transformed to a

minimally crossing system by a series of Reidemeister moves, without increasing
the number of crossings during the moves.

(To be precise, one should add some tameness assumptions: the surface should
be triangulizable, and the system of closed curves should have only a finite
number of double points, each being a crossing.)

It is important to note that the main content of Theorem 2 is that one does
not need to apply any of the operations (2) in the reverse direction — otherwise
the result would follow quite straightforwardly with the techniques of simplicial
approximation.

The idea of the proof is as follows (for one nontrivial closed curve C). First
it is shown that one may assume that S is ‘hyperbolic’, that is, has a hyperbolic
distance on it. Then C is freely homotopic to a unique shortest closed curve C"
on S. Consider the following operation. Choose a closed disk A on S, convex
with respect to the hyperbolic distance. Straighten out the intersections of C
with A: that is, replace each intersection I by the shortest curve that has the
same end points as I. Due to an extension of a theorem of Ringel [50], this can
be done by applying Reidemeister moves to A.

Now one may show that by choosing a finite number of closed disks A,
one can move C arbitrarily close to C’. Then making C' minimally crossing
essentially is reduced to making a closed curve on the annulus or the Mobius
strip minimally crossing (depending on whether C is orientation preserving or
not). This last turns out to boil down to the following auxiliary results on
permutations.

Let m be a permutation of {1,...,n}. A crossing pair of 7 is a pair {1, ]}
with (i —j)(m(3) —7(5)) < 0. The crossing number (or length (cf. Bourbaki [7]))
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cr(m) of 7 is the number of crossing pairs of .
Let mincr(7) denote the minimum of cr(n’) taken over all conjugates 7’ of
7. So mincr(7) only depends on the sizes of the orbits of w. A permutation is
manimally crossing if cr(m) = mincr(7). Similarly, maximally crossing is defined.
A transposition is any permutation (k,k + 1) for some k € {1,...,n — 1}.
Since each permutation o is a product of transpositions, it is trivial to say that

each permutation 7 can be transformed to a minimally crossing permutation by
a series of operations

(6) T — TTT,

where 7 is a transposition. Similarly for maximally crossing.
What however can be proved more strongly is:

Lemma. Fach permutation w of {1,...,n} can be transformed to a minimally
crossing permutation by a series of operations (6), while never increasing the
number of crossing pairs. A similar statement holds for mazimally crossing.

Geck and Pfeiffer [21] proved the first part of the Lemma more generally for any

Weyl group (instead of just a permutation group). It is not known if also the
‘maximally crossing’ part also holds tor Weyl groups.

5. Curves and circulations on surfaces. One motivation for studying
Reidemeister moves on surfaces was to derive a homotopic circulation theorem
for graphs embedded on a surface. Once one has Theorem 2, such a circulation
theorem can be derived by a number of straightforward arguments based on two
kinds of duality: duality of graphs on surfaces and linear programming duality
(Farkas’ lemma).

Again, let S be a surface, and let G = (V, E) be an undirected graph em-
bedded on S. For any closed curve D on S, let cr(G, D) denote the number
of intersections of G and D (counting multiplicities). Moreover, mincr(G, D)
denotes the minimum of cr(G, D’) where D’ ranges over all closed curves freely
homotopic to D and not intersecting V.

We first derive the following theorem from Theorem 2, which was proved for
the projective plane by Lins [36]:

Theorem 3. Let G = (V, E) be an Eulerian graph embedded on a surface S.

Then the edges of G can be decomposed into closed curves C1,...,Ck such that
for each closed curve D on S':

k
(7) mincr(G, D) = Z mincr(C;, D).
=1

Here a graph is Fulerian if each vertex has even degree. (Connectedness of
the graph is not assumed.) Moreover, decomposing the edges into C1q,...,Ck
means that each edge of G is traversed by exactly one of the Cj;.
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Note that the inequality > in (7) trivially holds, for any decomposition of
the edges into closed curves C4,...,C%. The content of the theorem is that
there exists a decomposition attaining equality for each D.

The idea of the proof is as follows. First, by an easy construction we may
assume that each vertex v of G has degree at most four. Next, we define the
straight decomposition of G as the system of closed curves that decomposes the
edges of GG in such a way that in each vertex of GG, opposite edges are traversed
consecutively. So each vertex of GG of degree four represents a (self-)crossing of
Cqi,...,C%.

Up to some trivial operations, such a decomposition is unique, and con-
versely, it uniquely describes G. So any Reidemeister move applied to Cy, ..., Ck
carries over a modification of G. Hence we can speak of Reidemeister moves
applied to G.

The following is easy to see:

(8) if G’ arises from G by one Reidemeister move of type IlI, then
mincr(G’, D) = mincr(G, D) for each closed curve D.

Let us call any graph G = (V, F) that is a counterexample to the theorem

with each vertex having degree at most four and with a minimal number of
faces, a minimal counterexample.

From (8) it directly follows that:

(9) if G' arises from a minimal counterexample GG by one Reidemeister
move of type III, then GG’ is a minimal counterexample again.

Moreover one has:

(10) if G is a minimal counterexample, then no Reidemeister move of

type 0, I or Il can be applied to G without increasing the number
of vertices of (.

For suppose that a Reidemeister move of type II can be applied to G. Then G
contains X< as subconfiguration. Replacing this by << would give a smaller
counterexample (since the function mincr(G, D) does not change by this oper-
ation), contradicting the minimality of G.
One similarly sees that no Reidemeister move of type 0 or 1 can be applied.
The proof is finished by showing the contradictory statement that the straight

decomposition Cy,...,Ck of any minimal counterexample G satisfies (7).
Choose a closed curve D. By Theorem 2 we can apply Reidemeister moves to
the system D, C1, ..., Ck so as to obtain a minimally crossing system D', Cy, ..., C\.

By (10) we did not apply Reidemeister moves of type 0, I or Il to C1, ..., Ck.
Hence by (8) for the graph G’ obtained from the final Cf,...,C} we have
mincr(G’, D) = mincr(G, D). So
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k
(11) mincr(G, D) = miner(G', D) < cr(G', D') = Z cr(C;, D)

=1

k k
=Y miner(C},D’) = » mincer(C;, D).
1=1 1=1

This proves Theorem 3.

Using surface duality one directly obtains from Theorem 3 the next theorem.
If G is a graph embedded on a surface S and C is a closed curve in G, then
minlength(C) denotes the minimum length of any closed curve C' ~ C in G.
(The length of C’ is the number of edges traversed by C’, counting multiplicities.)

Theorem 4. Let G = (V,FE) be a bipartite graph cellularly embedded on a
compact surface S. Then there exist closed curves Dy,..., Dy on S\ 'V such

that each edge of G is crossed by exactly one D; and by this D; only once and
such that for each closed curve C':

t
(12) minlength,(C) = Z mincr(C, Dj).
7=1

Now with linear programming duality (Farkas’ lemma) one derives from
Theorem 4 the following ‘homotopic circulation theorem’ — a fractional packing
theorem for cycles of given homotopies in a graph on a compact surface.

Let G = (V,FE) be a graph embedded on a compact surface 5. For any
closed curve C on G and any edge ¢ of GG let tro(e) denote the number of times
C traverses e. So tro € RE.

Call a function f : E — R a circulation (of value 1) if f is a convex
combination of functions tro. We say that f is freely homotopic to a closed
curve Cy if we can take each C freely homotopic to Cp.

Theorem 5 (homotopic circulation theorem). Let G = (V, E) be an undirected
graph embedded on a compact surface S and let Cy,...,Ck be closed curves on
S. Then there exist circulations fi,..., fr such that f; is freely homotopic to

C; (i =1,...,k) and such that Zf_____l fi(e) < 1 for each edge e, if and only if
for each closed curve D on S\ V one has

Kk
(13) cr(G, D) > Z mincr(Cj;, D).
1=1

We sketch the proof if G is cellularly embedded. Necessity of the condition 1s
direct. To show sufficiency, by Farkas’ lemma (cf. [54]) it suffices to show that
if d € QF and [ € QF such that > .ptrc(e) > d; for each 7 and each closed

curve C ~ C; in G, then ) _pl(e) = mel d;.
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Then one can show that it may be assumed that each d; and each l(e) is an
even integer, and that [(e) > O for each e. Replacing each edge e by a path of

length l(e) makes G into a bipartite graph G’'. Applying (13) to each of the D;
of Theorem 4 gives the required inequality.

6. Disjoint curves in graphs on surfaces. In the homotopic circulation
theorem one may wonder when there exists an integer-valued circulation. This
would correspond to a system of pairwise edge-disjoint cycles C1,...,C}; in G
with C freely homotopic to C;. However, the conditions given in the theorem are
not sufficient to get an integer-valued circulation; and no additional conditions
are known to ensure the existence of an integer-valued circulation.

If we want to have vertex-disjoint circuits, such conditions have been given
in [55], proving a conjecture of L. Lovédsz and P.D. Seymour:

Theorem 6. Let G be an undirected graph embedded on a compact surface S and
let Cq,...,Ck be pairwise disjoint stmple closed curves on S. Then there exist
pairwise disjoint simple circuits C1,...,C,. tn G where C; is freely homotopic
to C; fori=1,...,k, if and only if

k
(14) cr(G,D) > Zmincr(Cz-, D)

for each closed curve D on S, with strict inequality if D 1s doubly odd.

Here a closed curve D is doubly odd if D is the concatenation of two closed
curves D, and D, with a common beginning (= end) point, which is not on G,
in such a way that cr(@, D;) + 3.5, mincr(Cy, Dy) is odd for j = 1,2. It is not
difficult to see that the condition given in the theorem is necessary.

The problem solved in Theorem 6 arose during the graph minors project of
N. Robertson and P.D. Seymour. Principal result of this deep project is a proof
([53]) of Wagner’s conjecture: in any infinite class of graphs there are graphs GG
and H such that H is a minor of G. (H is a minor of G if H arises from G by
a series of deletions and contractions of edges.)

Equivalent to Robertson and Seymour’s theorem is that if G is a class of
graphs closed under taking minors, then there is a finite collection H of graphs
with the property that a graph G belongs to G if and only if G does not have a
minor H with H € H.

We may assume that H does not contain two graphs H, H' such that H' is
a minor of H. Then H is called the set of forbidden minors of &.

The well-known theorem of Kuratow-

N D ski [34] (or rather, its equivalent formu-
” ‘\‘ lation by Wagner [74]) states that if G is

’ the class of planar graphs, then { K5, K3 3}
5 33 is the set of forbidden minors.
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A consequence of Robertson and Seymour’s theorem is that for any surface
S there is a finite class of forbidden minors for the class of graphs embeddable
on 5. This was shown before by Archdeacon [2] for the projective plane and by
Archdeacon and Huneke [3] for compact nonorientable surfaces.

Very roughly speaking, the proof of Robertson and Seymour of Wagner’s
conjecture 1s as follows. It can be shown that for any graph G there is a finite
collection of surfaces such that each graph not containing G as a minor can be
expressed as a tree-structure of ‘pieces’ such that each piece can ‘almost’ be
drawn on a surface in the collection. Part of the proof next is that any graph
H embedded on a surface S is a minor of each graph that is embedded densely
enough on S (‘enough’ depending on H).

Related to this last statement is the question under which conditions for two
given graphs G and H embedded on S, H is a minor of G on S. That is, when
can we delete and contract edges of G, while keeping the embedding, so as to
obtain H (possibly after a homotopic shift of H over S). The case where H
consists of disjoint loops only is solved in Theorem 6.

T'he more general case of this question where H is an arbitrary graph is not
solved completely, but can be approached slightly similarly as follows. Let G
and H be graphs embedded on S. For each edge f of H choose an edge €5 of G.
Now we wish to complete these edges to a minor of G isomorphic to H. By this
1t 1S meant that one should find for each vertex v of H a tree T, in G such that
the T, are mutually disjoint and such that for each edge f of H, e £ 1s Incident
with 7, if and only if f is incident with v. Thus contracting each tree T, to one
vertex, the edges ey would give a minor isomorphic to H.

Now an extension of Theorem 6 (cf. [56]) characterizes under which condi-
tions such trees exist, given the homotopy of the trees. It amounts to finding
digjoint trees 17, ...,Ty such that each T; connects a given set V; of vertices. If
each V; just consists of two vertices, it reduces to a disjoint paths problem.

7. Menger and Konig. Disjoint paths problems belong to the heart of classi-
cal graph theory. They go back to 1927, when the topologist Karl Menger [40]
published an article called Zur allgemeinen Kurventheorie in which he showed
a result that now is one of the most fundamental results in graph theory:

Satz (8. Ist K ein kompakter reqular eindimensionaler Raum, welcher
zunschen den beiden endlichen Mengen P und Q n-punktig zusammen-
hangend ist, dann enthdlt K n paarweise fremde Bégen, von denen jeder
eznen Punkt von P und einen Punkt von Q verbindet.

The result can be formulated as a maximum-minimum theorem in terms of
graphs, as follows:

Menger’s theorem. Let G = (V| F) be an undirected graph and let P,Q C V.
Then the mazimum number of pairwise disjoint P — QQ paths is equal to the
manimum cardinality n of any set of vertices that intersects each P — Q path.
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Here a P — Q path is a path starting in P and ending in ). Two paths are
disjoint if they do not have any vertex or edge in common. The result became
also known as the n-chain theorem or the n-arc theorem. Knaster [28] observed
that (by an easy construction) Menger’s theorem is equivalent to:

Menger’s theorem (variant). Let G = (V, E) be an undirected graph and let
s, t € V with st ¢ E. Then the mazimum number of pairwise internally disjoint

s — t paths is equal to the minimum cardinality of any subset of V' \ {s,t} that
intersects each s — t path.

Here an s — t path is a path starting in s and ending in ¢. Two paths are
internally disjoint if they do not have a vertex or edge in common, except for
the end vertices.

Why was Menger interested in this question? In his article he investigates
a certain class of topological spaces called ‘Kurven’: a curve is a connected
compact topological space X with the property that for each x € X and each
neighbourhood N of z there exists a neighbourhood N’ € N of x such that
bd(N’) is totally disconnected. Here bd stands for ‘boundary’; a space is totally
disconnected if each point forms an open set. Notice that each graph, considered
as a topological space, is a curve in Menger’s terminology.

In particular, Menger was motivated by characterizing a certain furcation
number of curves. To this end, a curve X is called regular if for each z € X and
each neighbourhood N of x there exists a neighbourhood N’ C N of x such that
Ibd(NN')| is finite. The order of a point x € X is equal to the minimum natural
number n such that for each neighbourhood N of x there exists a neighbourhood
N' C N of z satisfying |bd(N')| < n.

According to Menger:

Eines der wichtigsten Probleme der Kurventheorie ist die Frage nach
die Beziehungen zwischen der Ordnungszahl eines Punktes der regularen

Kurve K und der Anzahl der im betreffenden Punkt zusammenstossenden
und sonst fremden Teilbogen von K.

In fact, Menger used ‘Satz 3’ to show that if a point in a regular curve K has
order n, then there exists a topological n-leg with p as top; that is, K contains
n arcs Pi,..., P, such that P, N P; = {p} for all 2,7 with 7 # j.

The proof idea is as follows. There exists a series N; D Nz D --- of open
neighbourhoods of p such that Ny N No N --- = {p} and |bd(N;)| = n for all
: =1,2,..., and such that

(15) 'bd(IN)| > n for each neighbourhood N C /NV;.

This follows quite directly from the definition of order.

Now Menger showed that we may assume that the space G; := N; \ Nit1
is a (topological) graph. For each 7, let Q; := bd(N;). Then (15) gives with
Menger’s theorem that there exist n pairwise disjoint paths F;1,..., F» in G
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such that each P; ; runs from @; to Q);41. Properly connecting these paths for
1 = 1,2,... we obtain n arcs forming the required n-leg.

It was however noticed by Koénig [30] that Menger gave a lacunary proof of
‘Satz B’. Menger applies induction on |E|, where E is the edge set of the graph
G. Menger first claims that one easily shows that |F| > n, and that if |E| = n
then G consists of n disjoint arcs connecting P and @. He states that if |E| > n
then there is a vertex s € PU(Q), or in his words (where the ‘Grad’ denotes |F|):

Wir nehmen also an, der irreduzibel n-punktig zusammenhangende Raum
K’ besitze den Grad g (> n). Offenbar enthilt dann K’ ein punktformiges
Stuck s, welches in der Menge P + (Q nicht enthalten ist.

Indeed, as Menger shows, if such a vertex s exists one is done: If s is not
contained in any set IV intersecting each P — () path such that |W| = n, then
we can delete s and the edges incident with s without decreasing the minimum
in the theorem. If s is contained in some set W intersecting each P — (Q path
such that |W| = n, then we can split G into two subgraphs G; and G5 that
intersect in W in such a way that P C G; and Q € G3. By the induction
hypothesis, there exist n pairwise disjoint P — W paths in G; and n pairwise

disjoint W — @) paths in G5. By pairwise sticking these paths together at W we
obtaln paths as required.

However, such a vertex s need not exist. It might be that V is the disjoint
union of P and () in such a way that each edge connects P and (). In that case,
(; 1s a bipartite graph, and what should be shown is that G contains a matching
(= set of disjoint edges) of size n. This is a nontrivial basis of the proof.

It 1s unclear when Menger became aware of the hole. In his reminiscences
on the origin of the n-arc theorem, Menger [42] wrote in 1981:

In the spring of 1930, I came through Budapest and met there a galaxy of
Hungarian mathematicians. In particular, I enjoyed making the acquain-
tance of Dénes Koénig, for I greatly admired the work on set theory of
his father, the late Julius K6nig—to this day one of the most significant
contributions to the continuum problem—and I had read with interest
some of Dénes papers. Konig told me that he was about to finish a book
that would include all that was known about graphs. I assured him that
such a book would fill a great need; and I brought up my n-Arc Theorem
which, having been published as a lemma in a curve-theoretical paper,
had not yet come to his attention. Konig was greatly interested, but did
not believe that the theorem was correct. “This evening,” he said to me
in parting, “I won’t go to sleep before having constructed a counterex-
ample.” When we met the next day he greeted me with the words, “A
sleepless night!” and asked me to sketch my proof for him. He then said
that he would add to his book a final section devoted to my theorem. This
he did; and 1t is largely thanks to KOnig's valuable book that the n-Arc
Theorem has become widely known among graph theorists.

Dénes Konig was a pioneer in graph theory and in applying graphs to other
areas like set theory, matrix theory, and topology. He had published in the
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1910s theorems on perfect matchings and on factorizations of regular bipartite
graphs in relation to the study of determinants by Frobenius.

At the meeting of 26 March 1931 of the Eo6tvos Lorand Matematikai és
Fizikai Téarsulat (Lorand Eo6tvos Mathematical and Physical Society) in Bu-

dapest, KOnig [29] presented a result that formed in fact the induction basis for
Menger’s theorem:

Paros koruljarasu graphban az éleket kimeritd szogpontok minimalis sza-

ma megegyezik a paronként kozos végpontot nem tartalmazé élek maxi-
malis szamaval.

In other words:

Konig’s theorem. In a bipartite graph G = (V, E), the maxtmum size of a
matching 1s equal to the minimum number of vertices needed to cover all edges.

Koénig did not mention in his paper that this result provided the missing induc-
tion basis in Menger’s proof, although he finishes with:

Megemlitjik végul, hogy eredményeink szorosan oOsszefuggnek FROBE-
NIUSnak determindnsokra és MENGERnek graphokra vonatkozdé némely
vizsgalataval. E kapcsolatokra méasutt fogunk kiterjeszkedni.

‘Masutt’ became Konig [30], where a full proof of Menger’s theorem is given,
with the following footnote:

Der Beweis von MENGER enthélt eine Licke, da es vorausgesetzt wird (S.
102, Zeile 3-4) dafl “K’ ein punktformiges Stiick s enthalt, welches in
der Menge P + () nicht enthalten ist”, wahrend es recht wohl moglich
ist, dafl — mit der hier gewahlten Bezeichnungsweise ausgedruckt —
jeder Knotenpunkt von G zu H; + H2 gehort. Dieser — keineswegs ein-
facher — Fall wurde in unserer Darstellung durch den Beweis des Satzes
13 erledigt. Die weiteren — hier folgenden — Uberlegungen, die uns
zum Mengerschen Satz fihren werden, stimmen in Wesentlichen mit dem
— sehr kurz gefafiten — Bewels von MENGER tiberein. In Anbetracht
der Allgemeinheit und Wichtigheit des Mengerschen Satzes wird im Fol-
genden auch dieser Teil ganz ausfiihrlich und den Forderungen der rein-
kombinatorischen Graphentheorie entsprechend dargestellt.

[Zusatz bei der Korrektur, 10.V.1933] Herr MENGER hat die Freundlich-
keit gehabt — nachdem ich ihm die Korrektur meiner vorliegenden Ar-
beit zugeschickt habe — mir mitzuteilen, dafl ihm die oben beanstandete
Licke seines Beweises schon bekannt war, dafl jedoch sein vor Kurzem
erschienenes Buch Kurventheorie (Leipzig, 1932) einen vollkommen lic-
kenlosen und rein kombinatorischen Beweis des Mengerschen Satzes (des
“n-Kettensatzes” ) enthalt. Mir blieb dieser Beweis bis jetzt unbekannt.

This book of Menger [41] was published in 1932, and contains a complete proof of
Menger’s theorem. Menger did not refer to any hole in his proof, but remarked:
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Uber den n-Kettensatz fiir Graphen und die im vorangehenden zum Be-
weise verwendete Methode vgl. Menger (Fund. Math. 10, 1927, S. 101 f.).
Die obige detaillierte Ausarbeitung und Darstellung stammt von Nobeling.

In his book Theorie der endlichen und unendlichen Graphen, published in 1936,
Ké&nig [31] calls his theorem ein wichtiger Satz, and he emphasizes the chrono-

logical order of the proofs of Menger’s theorem and of Kénig’s theorem (which
1s implied by Menger’s theorem):

Ich habe diesen Satz 1931 ausgesprochen und bewiesen, s. Kénig 9 und
11]. 1932 erschien dann der erste liickenlose Beweis des Mengerschen
Grapliensatzes, von dem in §4 die Rede sein wird und welcher als eine
Veraligemeinerung dieses Satzes 13 (falls dieser nur fir endliche Graphen
tormuliert wird) angesehen werden kann.

8. Disjoint paths and trees. Menger’s theorem addresses the problem of
finding a set of paths with one common beginning vertex and one common end
vertex. A more general problem is the following disjoint paths problem:

(16) given: a graph G = (V, E) and k pairs of vertices sy,t1,..., Sk, tk:

find: pairwise disjoint paths Py, ..., P, where P; runs from s; to
t; (1 = 1,...,k).

This covers four variants of the problem: the graph can be directed or undi-
rected, and ‘disjoint’ can mean: vertex-disjoint or edge-disjoint.

In 1974, D.E. Knuth (see [26]) showed that the edge-disjoint undirected
variant, and hence also each of the other variants, is NP-complete — and this is
even so if we restrict ourselves to planar graphs (Lynch [38]). This destroys (for
those believing NP7#co-NP or NP#P) the hope for nice theorems (like Menger’s
theorem) and for fast algorithms for solving this problem.

On the other hand, Robertson and Seymour [52], as another important re-
sult of their graph minors project, proved that for each fized k, there exists a
polynomial-time algorithm for the disjoint paths problem for undirected graphs.
T'heir algorithm has running time bounded by cx|V|3, for some constant cy
heavily depending on k. (It implies that for each fixed graph H there exists a
polynomial time algorithm to test if a given graph G contains H as a minor.)

For directed graphs, the situation seems different. In 1980, Fortune, Hopcroft,
and Wyllie [20] showed the NP-completeness of the vertex-disjoint paths prob-
lem for directed graphs, even when restricted to the case k = 2.

For planar directed graphs however there is a positive result ([58]):

Theorem 7. For each fized k there is a polynomial-time algorithm for the k
vertex-disjoint paths problem for directed planar graphs.

T'his is a result only of interest from the point of view of theoretical complexity:
the degree of the polynomial bounding the running time of the algorithm is
quadratic in k.
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The proof of Theorem 7 is based on representing disjoint paths as ‘flows’ over
a free group. Indeed, let a directed planar graph D = (V, A) and s1,t1,..., Sk, tk €
V be given. Let Gj be the free group with k generators g;,...,gx. If II =
(Py,...,Py) is a solution to the disjoint paths problem, let ¢r7 : A — Gy be
defined by, for a € A: ¢r(a) := g; if P, traverses a (1 =1,...,k), and := 1 if no
P, traverses a.

Let F be the set of faces of D. Call two functions ¢, : A — G homologous
if there exists a function p : F' — G, such that for each arc a of D one has:

(17) Y(a) = p(f)" d(a)p(f'),

where f and f’ are the faces at the left hand side and the right hand side of a
respectively (with respect to the orientation of the plane and of the arc a).

This defines an equivalence relation on functions A — Gk. We now enu-
merate representatives of homology classes of functions A — Gj. Generally
there are infinitely many homology classes, but one can find in polynomial time
a collection of O(|V|?*"+3) homology classes of which one can be sure that it
covers all functions ¢ with II a solution to the vertex-disjoint paths problem
(without having these functions explicitly).

For the representative 1) of each of these classes one should test if there 1s
a path packing function ¢ homologous to 3. This can be done in polynomial
time, by reducing it to the following dual problem.

Given any directed graph D = (V, A) (not necessarily planar) and any group
G, call two functions ¢,7 : A — G cohomologous if there exists a function
p: V — G such that for each arc a = (u,w) of D one has:

(18) Y(a) = p(u) ™ ¢(a)p(w).

Again this is an equivalence relation.
Consider the following cohomology feasibility problem:

(19) given: a directed graph D = (V, A) and functions ¢ : A — G and
H: A— P(G);
find: a function 1 cohomologous to ¢ with 9 (a) € H(a) for each
a € A.

This is in its general form an NP-complete problem: when G = C3 (the group

with three elements) and ¢(a) = 1 and H(a) = C3 \ {1} for each arc a, the
problem amounts to the 3-colourability of the vertices of D. However:

Theorem 8. If G is the free group and each H(a) ts hereditary, then the
cohomology feasibility problem is solvable in polynomzial time.

Here a subset H of the free group is hereditary if for each (reduced) word w'ww"”
in H, also the word w belongs to H.

Now the problem of finding a path packing function ¢ homologous to a
given function 1, can be reduced to the cohomology feasibility problem on an
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extension of the dual graph of D, where each H(a) is equal to {1,¢9;,...,9gx} or
to {1,91,97",--.,9%, g5 ' }. This finishes the outline of the proof of Theorem 7.

Theorem 7 can be generalized to disjoint trees connecting given sets of ver-
tices, and Theorem 8 can be generalized to free partially commutative groups
— see [59]. Moreover, necessary and sufficient conditions for the existence of a,
solution can be described in terms of cycles in the graaf D.

9. VLSI-routing. The approach described above for the vertex-disjoint paths
problem in directed planar graphs is analogous to a method developed for the
VLS1-routing problem. This problem asks for the routes that wires should make
on a chip so as to connect certain pairs of pins and so that wires connecting
different pairs of pins are disjoint.

As the routes that the wires potentially can make form a graph, the problem
to be solved can be modeled as a disjoint paths problem. Consider an example of
such a problem as in Figure 11 — relatively simple, since generally the number
of pins to be connected is of the order of several thousands. The grey areas are

‘modules’ on which the pins are located. Points with the same label should be
connected.

——

Figure 11

In the example, the graph is a ‘grid graph’, which is typical in VLSI-design
since it facilitates the manufacturing of the chip and it ensures a certain min-
imum distance between disjoint wires. But even for such graphs the disjoint
paths problem is NP-complete.

Now the following two-step approach was proposed by Pinter [46|. First
choose the homotopies of the wires; for instance like in Figure 12. That is, for
each 2 one chooses a curve C; in the plane connecting the two vertices z, in

such a way that they are pairwise disjoint, and such that the modules are not
traversed.
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Figure 12

Second, try to find disjoint paths P;,..., Pr in the graph such that F; 1s ho-
motopic to C;, in the space obtained from the plane by taking out the rectangles
forming the modules. In Figure 13 such a solution is given.

r-.-.— - " i " o

Figure 13

It was shown by Leiserson and Maley [35] that this second step can be
performed in polynomial time. So the hard part of the problem is the first step:
finding the right topology of the layout.

Cole and Siegel [8] proved a Menger-type cut theorem characterizing the
existence of a solution in the second step. That is, if there is no solution for the
disjoint paths problem given the homotopies, there is an ‘oversaturated’ cut: a
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curve D connecting two holes in the plane and intersecting the graph less than
the number of times D necessarily crosses the curves C;.

This can be used in a heuristic practical algorithm for the VLSI-routing
problem: first guess the homotopies of the solution; second try to find disjoint
paths of the guessed homotopies; if you find them you can stop; if you don’t find
them, the oversaturated cut will indicate a bottleneck in the chosen homotopies;
amend the bottleneck and repeat.

Similar results hold if one wants to pack trees instead of paths (which is
generally the case at VLSI-design), and the result can be extended to any planar

graph [56]. As a theoretical consequence one has (by an enumeration argument
similar to the one used for Theorem 7):

Theorem 9. For each fized number of modules, the planar VLSI-routing prob-
lem can be solved in polynom:ial time.

10. Railway timetabling. The cohomology feasibility problem also shows
up in the problem of making the timetable for Nederlandse Spoorwegen (Dutch
Railways), a project currently performed for NS by CWI (Adri Steenbeek and
me). The Dutch railway system belongs to the busiest in the world, with sev-
eral short distance trajectories, while many connections are offered, with short
transfer time.

Task 1s to provide algorithmic means to decide if a given set of conditions on
the timetable can be satisfied. In particular, the hourly pattern of the timetable
is considered. The basis of the NS-timetable is a periodic cycle of one hour, so
that on each line there is a train at least once an hour.

How can this problem be modeled? First of all, each departure time to be
determined is represented by a variable v;. Here ¢ is a train leg that should go
every hour once. So v; represents a variable in the cyclic group Cgo = Z/60Z.
Similarly, the arrival time is represented by a variable a; in Cgp.

In the problem considered by us, a fixed running time was assumed for each
leg. This implies that if train leg ¢ has a running time of 11 minutes, then
a; — vy = 11. The waiting period of a train in a station is prescribed by an
interval. E.g., if £ and ¢’ are two consecutive train legs of one hourly train, and
if it 1s required that the train stops at the intermediate station for a period of
at least 2 and at most 5 minutes, then one poses the condition vy — a; € (2, 5]
(as interval of Clgg).

This gives relations between train legs of one hourly train. To make connec-
tions, one has to consider train legs in two different trains. So if one wants to
make a connection from leg ¢, arriving in Utrecht say, of one train, to a leg ¢
departing from Utrecht of another train, so that the transfer time is at least 3
and at most 7 minutes, then one gets the condition vy — a; € [3,7].

Finally, there is the condition that for safety each two trains on the same
trajectory should have a timetable distance of at least 3 minutes. That is, if
train leg ¢ of one train and train leg ¢’ of another train run on the same railway
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section, then one should pose the condition v, — v € [3,57].

By representing each variable by a vertex, the problem can be modeled as
follows. Let D = (V, A) be a directed graph, and for each a € A, let H(a) be
an Interval on Cpgo. Find a function p : V' — Cjgg such that p(w) — p(u) € H(a)
for each arc a = (u,w) of D.

This i1s a special case of the cohomology feasibility problem. Note that (as
Ceo is abelian) one may equivalently find a ‘length’ function | : A — Cgg such
that l(a) € H(a) for each a € A and such that each undirected circuit in D has
length 0. (For arcs a in the circuit traversed backward one takes —I(a) for its
length.)

It is not difficult to formulate this problem as an integer linear programming

problem. Indeed, if for any arc a = (u, w), H(a) is equal to the interval [l,, u,],
we can put:

(20) la £ Ty — Ty + 60y, < u,,

where y, is required to be an integer. Thus we get a system of |A| linear
inequalities with |V| real variables z, and |A| integer variables y,. In fact, if
there is a solution, there is also one with the z, being integer as well (as the z
variables make a network matrix).

Now in solving (20), one may choose a spanning tree 7 in D, and assume
that y, = O for each arc a in T (cf. Serafini and Ukovich [60]). Alternatively,
one may consider the problem as follows.

A circulation is a function f : A — R such that the ‘low conservation law’:

(21) >, fl@= >, fla)
)

a€d— (v) acbdt (v

holds for each vertex v of D. Here 6~ (v) and 67 (v) denote the sets of arcs
entering v and leaving v, respectively.

Let L be the lattice of all integer-valued circulations. Now one can describe
the problem as one of finding a linear function ® : L — Z such that there
exist z, (for a € A) with the properties that I, < 2, < u, for each arc A and
2T f = 60®(f) for each f € L.

The existence of such z, can be checked in polynomial time, given the values
of ® on a basis of L. Hence, in a searching for a feasible timetable one can branch
on values of & on an appropriate basis of L. Given ®, if there exist z,, one can
optimize the z, under any linear (or convex piecewise linear) objective function
(for instance, passenger waiting time).

Typically, the problems coming from NS have about 3000 variables with
about 10,000 constraints. In a straightforward way they can be reduced to
about 200 variables with about 600 constraints. T'he above observations turn
out to require a too heavy framework in order to solve the problem fast in
practice (although they are of help in optimizing a given solution).

The package CADANS (Combinatorisch-Algebraisch Dienstregeling- Algorit-
me voor de Nederlandse Spoorwegen) that CWI is developing for NS for solving
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the problem above, is based on a fast constraint propagation technique and fast
branching heuristics designed by Adri Steenbeek. It gives, within time of the
order of 1-10 minutes either a solution (i.e., a feasible timetable), or an inclu-
sionwise minimal set of constraints that is infeasible. If CADANS gives the
latter answer, the user should drop, or relax, at least one of the constraints 1n
the minimal set in order to make the constraints feasible. Thus CADANS can
be used interactively to support the planner. Alternatively, it can uncover bot-
tlenecks in the infrastructure, and indicate where extra infrastructure (viaducts,

flyovers, four-tracks) should be built in order to make a given set of conditions
feasible.

11. Transportation and flow problems. Railway transportation forms
a classical source of problems studied in operations research. In 1939, Kan-
torovich [25] published in Leningrad a monograph called Mathematical Methods
of Organizing and Planning Production, in which he outlined a new method to
maximize a linear function under given linear inequality constraints, thus laying
the fundaments for linear programming. He gave the tollowing application:

Let there be several points A, B, C, D, E which are connected to one

B another by a railroad network. It is possible to make

the shipments from B to D by the shortest route

A C BED, but it is also possible to use other routes as

well: namely BC' D, BAD. Let there also be given a

schedule of freight shipments; that is, it 1s necessary

4 to ship from A to B a certain number of carloads,

from D to C a certain number, and so on. The

problem consists of the following. There is given a maximum capacity

for each route under the given conditions (it can of course change under

new methods of operation in transportation). It is necessary to distribute

the freight flows among the different routes in such a way as to complete

the necessary shipments with a minimum expenditure of fuel, under the

condition of minimizing the empty runs of freight cars and taking account

of the maximum capacities of the routes. As was already shown, this
problem can also be solved by our methods.

In 1941, Hitchcock [24] formulated another variant of a transportation prob-
lem. Independently, during the Second World War, Koopmans was on the staff
of the Combined Shipping Adjustment Board (an agency formed by the Allied
to coordinate the use of their merchant fleets). Influenced by his teacher Tin-
bergen (cf. [73]) he was interested in the topic of ship freights and capacities.
His task at the Board was the planning of assigning ships to convoys so as to
accomplish prescribed deliveries, while minimizing empty voyages (cf. [12]).
Koopmans found in 1943 a method for the transshipment problem, but due to
wartime restrictions he published it only after the war [32].

Koopmans and Reiter [33]| investigated the economic implications of the
method:
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For the sake of definiteness we shall speak in terms of the transportation
of cargoes on ocean-going ships. In considering only shipping we do not
lose generality of application since ships may be “translated” into trucks,
aircraft, or, in first approximation, trains, and ports into the various sorts
of terminals. Such translation is possible because all the above examples
involve particular types of movable transportation equipment.

The cultural lag of economic thought in the application of mathematical
methods is strikingly illustrated by the fact that linear graphs are making
their entrance into transportation theory just about a century after they
were first studied in relation to electrical networks, although organized
transportation systems are much older than the study of electricity.

The breakthrough in linear programming came around 1950 when Dantzig
110] published the simplex method for the linear programming problem. The
success of the method was caused by a very simple tableau-form and pivoting
rule and by the large efficiency in practice. Dantzig also described a direct
implementation of the simplex method to the transportation problem ([9]).

In the beginning of the 1950s, T.E. Harris at the RAND Corporation (the
think tank of the U.S. Air Force in Santa Monica, California) called attention
for the following special case of the problem considered by Kantorovich:

Comnsider a rail network connecting two cities by way of a number of in-
termediate cities, where each link of the network has a number assigned

to it representing its capacity. Assuming a steady state condition, find a
maximal flow from one given city to the other.

This question raised a stream of research at RAND. The problem can be for-
malized as follows.

Let be given a directed graph D = (V, A), with two special vertices, a ‘source’
s and a ‘sink’ or ‘terminal’ t. Then an s —1% flow is a function f : A — R, such

that for each vertex v # s,t the flow conservation law (21) holds. The value of
f 1s equal to the net flow leaving s; that is:

(22) value(f):= ) fla)- D f(a).

acd— (s) a€6+(3)

It i1s not difficult to prove that this value is equal to the net flow entering £.

If moreover a ‘capacity’ function ¢ : A — R, is given, one says that f is
subject to c if f(a) < c(a) for each arc a.

Now the mazxzimum flow problem can be formulated:

(23) given: a directed graph D = (V, A), vertices s,t € V, and a ‘capac-
ity’ function c: A — R ;

find: a flow f subject to ¢ maximizing value(f).

In their basic paper “Maximal flow through a network” (published as a
RAND Report of 19 November 1954), Ford and Fulkerson [17] observed that this
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1S just a linear programming problem, and hence can be solved with Dantzig’s
simplex method.

Main result of Ford and Fulkerson’s paper is the famous maz-flow min-cut
theorem. To this end, the concept of a cut is defined. Let U is any set with
s€Uandt & U. Then 67(U) (the set of all arcs leaving U) is an s — ¢t cut. The
capacity of the cut is the sum of all ¢(a) for a € §T(U).

It 1s clear that the capacity of any cut is an upper bound on the maximal
value of s — ¢t flows. What Ford and Fulkerson [17] showed is:

Max-flow min-cut theorem. The maximal value of the s — t flows is equal
to the minimal capacity of the s — t cuts.

Since (as follows from an observation of Dantzig [9]) there is an integer-valued

maximum flow if all capacities are integer, an arc-disjoint version of Menger’s
theorem follows from the max-flow min-cut theorem.

Alternative proofs of the max-flow min-cut theorem were given by Robacker
151] and by Elias, Feinstein, and Shannon [14]. In this last paper it is claimed
that the result was known by workers in communication theory:

This theorem may appear almost obvious on physical grounds and ap-
pears to have been accepted without proof for some time by workers in
communication theory. However, while the fact that this low cannot be
exceeded 1s indeed almost trivial, the fact that it can actually be achieved
1s by no means obvious. We understand that proofs of the theorem have
been given by Ford and Fulkerson and Fulkerson and Dantzig. The fol-
lowing proof is relatively simple, and we believe different in principle.

The max-flow min-cut theorem being also a combinatorial result, one was
interested in obtaining combinatorial methods for finding maximum flows. First,
Ford and Fulkerson [17] gave a simple algorithm for the maximal flow problem
in case the graph, added with an extra edge connecting s and ¢, is planar.

Next, a heuristic method, the flooding technique, was presented by Boldyreft
6] on 3 June 1955 at the New York meeting of the Operations Research Society
of America (RAND Report of 5 August 1955). The method was intuitive, and
the author did not claim generality:

It has been previously assumed that a highly complex railway transporta-
tion system, too complicated to be amenable to analysis, can be repre-
sented by a much simpler model. This was accomplished by representing
each complete railway operating division by a point, and by joining pairs
of such points by arcs (lines) with traffic carrying capacities equal to the
maximum possible volume of traffic (expressed in some convenient unit,
such as trains per day) between the corresponding operating divisions.

In this fashion, a network is obtained consisting of three sets of points —
points of origin, intermediate or junction points, and the terminal points
(or points of destination) — and a set of arcs of specified traffic carrying
capacities, joining these points to each other.
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Boldyreff’s arguments for designing a heuristic procedure are formulated as:

In the process of searching for the methods of solving this problem the
following objectives were used as a guide:

1. That the solution could be obtained quickly, even for complex networks.

2. That the method could be explained easily to personnel without spe-
cialized technical training and used by them eftectively.

3. That the validity of the solution be subject to easy, direct verification.

4. That the method would not depend on the use of high-speed computing
or other specialized equipment.

Boldyreff’s ‘looding technique’ pushes a maximum amount of flow greedily
through the network. If at some vertex a ‘bottleneck’ arises (i.e., there are
more trains arriving than can be pushed further through the network), it is
eliminated by returning the excess trains to the origin. It is empirical, not using
backtracking, and not leading to an optimum solution in all cases:

Whenever arbitrary decisions have to be made, ordinary common sense
is used as a guide. At each step the guiding principle is to move forward
the maximum possible number of trains, and to maintain the greatest
flexibility for the remaining network.

Boldyreff speculates that ‘in dealing with the usual railway networks a single
flooding, followed by removal of bottlenecks, should lead to a maximal flow.’
He gives as an example of a complex network, a railway transportation system
with 41 vertices and 85 arcs, for which ‘the total time of solving the problem 1s
less than thirty minutes.’

Soon after, Ford and Fulkerson presented in a RAND Report of 29 December
1955 [18] their ‘very simple algorithm’ for the maximum flow problem, based
on finding ‘augmenting paths’. The algorithm finds in a finite number of steps
a maximum flow, if all capacities have rational values. After mentioning the
maximum flow problem, they remark:

This is of course a linear programming problem, and hence may be solved
by Dantzig’s simplex algorithm. In fact, the simplex computation for a
problem of this kind is particularly efficient, since it can be shown that the
sets of equations one solves in the process are always triangular. However,
for the flow problem, we shall describe what appears to be a considerably
more efficient algorithm; it is, moreover, readily learned by a person with
no special training, and may easily be mechanized for handling large net-
works. We believe that problems involving more than 500 nodes and 4,000
arcs are within reach of present computing machines.

Ford and Fulkerson’s algorithm for the maximum-flow problem formed a
breakthrough. It has implementations that require only polynomially bounded
running time, as was shown by Dinits [11] and Edmonds and Karp [13]. In the

022



latter paper, also a polynomial-time algorithm is given for the minimum-cost

flow problem. It implies a polynomial-time algorithm for the minimum-cost
circulation problem.

12. Routing of railway stock. The work on the minimum-cost circulation
problem can be applied to minimizing the railway stock needed to run a sched-
ule. NS (Nederlandse Spoorwegen) runs an hourly train service on its route
Amsterdam - Schiphol Airport - Leyden - The Hague - Rotterdam - Dordrecht
- Roosendaal - Middelburg - Vlissingen vice versa, with timetable as in Table 1.

| train number [2123[2127[2131[2135[2139]2143[2147[2151[2155
l Amsterdam V 6.48| 7.55] 8.56[ 9.56[10.56[11.56]12.5613.56

Rotterda{n A 7.55| 8.58| 9.58110.58/11.5812.58|13.58|14.58
Rotterdam Vl 7.00] 8.01| 9.02110.03111.02112.03{13.02114.02115.02

Roosendaal A| 7.40| 8.41| 9.41]10.43]11.41]12.41|13.41 14..41_’»15.41

| Roosendaal V| 7.43| 8.43| 9.43|10.45]11.43[12.43(13.43]14.43[15.43]
Vlissingen  A| 8.38| 9.38(10.38/11.38/12.38|13.38({14.38|15.38|16.38|

L s o i mm%“mm“ A ety
oo i

train number | 2159 2163|2167 |2171] 2175 ] 2179] 2183 [2187] 2191

——

Amsterdam V]14.56]15.56[16.56 17.56l18.56 19.56]20.56[21.56]22.56

Rotterdam A115.58(16.58[17.58118.58{19.58(20.58 21.58k22.58 23.58
Rotterdam  V[16.00{17.01]18.01]19.02{20.02[21.02{22.02{23.02] |
Roosendaal A|16.43{17.43|18.42/19.41|20.41{21.41|22.41|23.54|
Roosendaal V|16.45[17.45[18.44]19. 43121.43
Vlissingen A|17.40({18.40119.39|20.38|21.38|22.38|

dal N Sty W

train number 2112]2116]2120[2124[2128]2132[2136] 2140
Vlissingen  V | 5.30] 6.54] 7.56] 8.56] 9.56[10.56]11.56
Roosendaal A 6.35| 7.48] 8.50| 9.50|10.50/11.50 12.50]
Roosendaal V 5.29| 6.43] 7.52] 8.53] 9.53[10.53 "11.53i12.53
Rotterdam A 6.28| 7.26| 8.32] 9.32110.32/11.32(12.32/13.32
Rotterdam V| 5.31| 6.29| 7.32| 8.35| 9.34[10.34[11.34{12.34{13.35
Amsterdam Al 6.39] 7.38 8.3810.38 11.38{12.38|13.38 14....:3_8

[ train number | 2144 | 2148 ] 2152 ] 2156 | 2160 | 2164 | 2168 2172] 2176

APl AL by

Vlissingen = V][12.56[13.56]14.56]15.56[16.56][17.56]18.56]19.55
Roosendaal  A}13.50/14.50|15.50{16.50}17.50{18.50/19.50/20.49
Roosendaal V|13.53[14.53[15.53]16.53[17.53]18.53]19.53[20.52{21.53
Rotterdam  A|14.32{15.32|16.32|17.33|18.32|19.32|20.32|21.30{22.32
Rotterdam  V|14.35(15.34|16.34]17.35|18.34[19.34(20.35[21.32[22.34
Amsterdam At15.38i16.40 17.38|18.38{19.38/20.38|21.38|22.38|23.38

Table 1: Timetable Amsterdam-Vlissingen vice versa

The trains have more stops, but for our purposes only those given in the table
are of interest.

For each of the legs of any scheduled train, Nederlandse Spoorwegen has
determined an expected number of (second-class) passengers, given in Table
2. The problem to be solved is: What is the minimum amount of train stock
necessary to perform the service in such a way that at each leg there are enough
seats”
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For any leg of any train, leaving place X at time ¢ and arriving at place Y
at time t', we make a directed arc from (X,¢) to (Y,#'). For instance, there is
an arc from (Roosendaal, 7.43) to (Vlissingen, 8.38).

Moreover, for any place X and any two successive times ¢,t’ at which any
train leaves or arrives at X, we make an arc from (X,t) to (X,t’). Thus in our
example there will be arcs, e.g., from (Rotterdam, 8.01) to (Rotterdam, 8.32),
from (Rotterdam,8.32) to (Rotterdam,8.35), from (Vlissingen, 8.38) to (Vlis-
singen,8.56), and from (Vlissingen, 8.56) to (Vlissingen, 9.38).

Figure 14: The graph D. All arcs are oriented clockwise

Finally, for each place X there will be an arc from (X, ¢) to (X,t’), where ¢
1s the last time of the day at which any train leaves or arrives at X and where
t' is the first time of the day at which any train leaves or arrives at X. So there
is an arc from (Roosendaal, 23.54) to (Roosendaal, 5.29).

We can now describe any possible routing of train stock as a function f :
A — Z,, where f(a) denotes the following. If a corresponds to a leg, then
f(a) is the number of units deployed for that leg. If a corresponds to an arc
from (X,t) to (X,t'), then f(a) is equal to the number of units present at place
X in the time period ¢-t’ (possibly overnight).
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First of all, this function is a circulation, that is, the flow conservation law
(21) holds. Moreover, in order to satisfy the demand and capacity constraints,
f(a) should satisfy d(a) < f(a) < 5, where d(a) is the minimum number of
train-units necessary for leg a, based on the lower bound on seats for leg a.

Now observe that the total number of units needed, is equal to the total
flow on the ‘overnight’ arcs. So if we wish to minimize the total number of
units deployed, we could restrict ourselves to minimizing ) |, c 40 f (a), where A°
denotes the set of overnight arcs. (So |A°| = 4 in the Amsterdam - Vlissingen
example.)

It is easy to see that this fully models the problem. Hence determining the
minimum number of train-units amounts to solving a minimum-cost circulation
problem, where the cost function is quite trivial: we have cost(a) =1 1f a 1s an
overnight arc, and cost(a) = 0 for all other arcs.

Having this model, we can apply standard min-cost circulation algorithms,
based on min-cost augmenting paths and cycles (cf. Ford and Fulkerson 19
and Ahuja, Magnanti, and Orlin [1]). Implementation gives solutions of the
problem (for the above data) in about 0.05 CPUseconds on an SGI R4400.

Alternatively, the problem can be solved easily with any linear programming
package, since by the integrality of the input data and by the total unimodularity
of the underlying matrix the optimum basic solution will have integer values
only. With the linear programming package CPLEX (version 2.1) the optimum

solution given in Table 3 was obtained again in about 0.05 CPUseconds (on an
SGI R4400):

train number

Amsterdam- Rotterdam 3 (3] 2]2]2]2 |
| Rotterdam-Roosendaal 2 3 3 2 1 2 | 2 2 2 |

walalish ATl kil

1
Roosendaal- Vlissingen 3 2 2 | 2 | 2 2 2 2 2
train number |2159]2163]2167]2171[2175[2179]2183[2187|2191

— —— e e e
[ Amsterdam-Rotterdam | 5 5 4 4 2 2 - 2 1
Rotterdam-Roosendaal 4 5 4 3 2 2 1 1 |
| Roosendaal-Vlissingen 3 4 3 2 2 1 I
|'”“ " train number |’2f08 511212116[2120[2124[2128|2132{2136(|2140
[ Vlissingen-Roosendaal | 1 3 3
Roosendaal-Rotterdam | | 2 4 4
Rotterdam-Amsterdam 1 2 4 4

train number

Vismger-Roosendsal | 2 [ 2 [ 7 [ 3 [ 2 [ 2 [
Roosendaal-Rotterdam m

RotterdgEﬂAmsterdam 4 4

Table 3: Minimum circulation with one type of stock

Required are 22 units, divided during the night over Amsterdam: 4, Rotter-
dam: 2, Roosendaal: 8, and Vlissingen: 3.
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It is quite direct to modify and extend the model. Instead of minimizing
the number of train-units one can minimize the amount of carriage-kilometers
that should be made every day, or any linear combination of both quantities.
In addition, one can put an upper bound on the number of units that can be
stored at any of the stations.

Instead of considering one line only, one can more generally consider networks
of lines that share the same railway stock, including trains that are scheduled
to be split or combined. (Nederlandse Spoorwegen has trains from The Hague
and Rotterdam to Leeuwarden and Groningen that are combined to one train
on the common trajectory between Utrecht and Zwolle.)

If only one type of unit is employed for that part of the network, each unit
having the same capacity, the problem can be solved fast even for large networks.

13. Two types of stock. The problem becomes harder if there are several
types of trains that can be deployed for the train service. Clearly, if for each
scheduled train we would prescribe which type of unit should be deployed, the
problem could be decomposed into separate problems of the type above. But
if we do not make such a prescription, and if some of the types can be coupled
together to form a train of mixed composition, we should extend the model to
a ‘multi-commodity circulation’ model.

Let us restrict ourselves to the case Amsterdam-Vlissingen again, where now
we can deploy two types of two-way train-units, that can be coupled together.
The two types are type IC3, each unit of which consists of 3 carriages and has
163 seats, and type IC4, each unit of which consists of 4 carriages and has 218
seats.

Again, the demands of the train legs are given in Table 2. The maximum
number of carriages that can be in any train again is 15. This means that if a
train consists of x units of type IC3 and y units of type 1C4 then 3z + 4y < 1o
should hold.

It is quite easy to extend the model above to the present case. Again we
consider the directed graph D = (V, A) as above. At each arc a let f(a) be the
number of units of type IC3 on the leg corresponding to a and let g(a) similarly
represent type IC4. So both f: A — Z; and g : A — Z, are circulations,
that is, satisfy the flow circulation law:

(24) Y fla)= ) fla)

acd— (v) acdt (v)
Y ogla)= D gla)
acs— (v) a€s+ (v)

for each vertex v. The capacity constraint now 1s:
(25) 3f(a) +4g(a) <15

for each arc a representing a leg. The demand constraint can be formulated as
follows:
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(26) 163f(a) + 218g(a) > p(a),

for each arc a representing a leg, where p(a) denotes the number of seats required
(Table 2). Note that in contrary to the case of one type of unit, now we cannot
speak of a minimum number of units required: now there are two dimensions,
so that minimum train compositions need not be unique.

If costics and costycy represent the cost of purchasing one unit of type IC3
and ot type I1C4, respectively, then the problem is to find f and ¢ so as to

(27) minimize Z (costicaf(a) + costicag(a)).
ac A°

The classical min-cost circulation algorithms do not apply now. Moreover,
when solving the problem as a linear programming problem, we lose the pleasant
phenomenon observed above that we automatically would obtain an optimum
solution f,g : A — R with integer values only.

S50 the problem is an integer linear programming problem, with 198 integer
variables. Solving the problem in this form with the integer programming pack-
age CPLEX (version 2.1) would give (for the Amsterdam-Vlissingen example)
a running time ot several hours, which is too long, for instance when one wishes
to compare several problem data.

However, there are ways of speeding up the process, by sharpening the con-
straints and by exploiting more facilities offered by CPLEX. The conditions (25)
and (26) can be sharpened in the following way. For each arc a representing a
leg, the two-dimensional vector (f(a), g(a)) should be an integer vector in the

polygon
(28) P, :={(z,y)|lz > 0,y > 0,163x + 218y > p(a), 3z + 4y < 15}.

For instance, the trajectory Rotterdam- Amsterdam of train 2132 gives the poly-
gon

(29) P, = {(z,y)lx > 0,y > 0,163z + 218y > 344, 3z + 4y < 15}.

In a picture:
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In a sense, the inequalities are too wide. The constraints given in (29) could
be tightened so as to describe exactly the convex hull of the integer vectors in
the polygon P, (the ‘integer hull’), as in:

4 » ® ® ® e ™ ®

type IC3—>

Thus for segment Rotterdam-Amsterdam ot train 2132 the constraints in
(29) can be sharpened to:

Doing this for each of the 99 polygons representing a leg gives a sharper set
of inequalities, which helps to obtain more easily an integer optimum solution
from a fractional solution. (This is a weak form of application of the technique
of polyhedral combinatorics.) Finding all these sharpened inequalities can be

done in a pre-processing phase, and takes about 0.04 CPUseconds.
[ train number [2123]2127]2131][2135][2139]2143 2147[2151[2155]
Amsterda_m?Rotférjahé,rﬁ T ]
train number [2159][2163][2167]2171]2175]2179]2183]2187[2191

Implementation of these techniques makes that CPLEX gives a solution to
| ﬁotter@am—RooseQdéal 041042 0+2|0+2[14+3|0+3
[ Amsterdam-Rotterdam [0+3[2+1[0+3[1+2]0+2[0+1][1+2[0+1][0+1
| Roosendaal-Vlissingen |0+42|2+1|0+2 ;'Q+2+2:+*0 0-+1

the Amsterdam-Vlissingen problem in 1.58 CPUseconds — see Table 4.
- ———————
| Roosendaal-Vlissingen 0+2]0+2[2+0[0+1]0+1{0+2|0+2
Rotterdam-Roosendaal [0+3[2+2[0+3[0+2|1+1[2+0]1+3 1+0]

| train number [2108][2112[2116]2120[2124][2128][2132[2136]2140
Vlissingen-Roosendaal 0+3]1+2 0+2]0+2[0+1]1+1
Roosendaal-Rotterdam 1+2({34+0|04+3|0+4+2|14+2]04+2 241|143

Rotterdam-Amsterdam [0+1[0+2[4+0]0+3]0+3]1+2]0+2]2+0
train number [2144[2148[2152[2156]2160[2164]2168|2172[2176

S ———————— T
Vlissingen-Roosendaal |1+1|0+1 0+2({2+0|0+2[{2+0|0+1] |
Roosendaal-Rotterdam |0+1|0+3|1+3|{0+3|1+1|0+1|2+42|0+1

e ——— ____________________L_______I_____r L — -
Rotterdam-Amsterdam |1+1[{0+3[14+2|0+3|1+1 - 0+2]0+1

Table 4: Minimum circulation with two types of stock
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In this table z + ¥ means: z units of type IC3 and y units of type IC4. In

total, one needs 7 units of type IC3 and 12 units of type 1C4, divided during
the night as in Table 5.

number of | number of || total | total |
| units of units of || number of | number of ]
type 1C3 type 1C4 units carriages
“Amsterdam || 0 | 2 2 5|
0 [ R
“Roosendaal || 3 s 6 [ o
“Total | 5 [ 12 | 1 [ &

Table 5: Required stock (two types)

So compared with the solution for one type only, the possibility of having
two types gives both a decrease in the number of train-units (17 instead of 22)
and in the number of carriages (63 instead of 66).

Our research for NS in fact has focused on more extended problems that
require more complicated models and techniques. One requirement is that in
any train ride Amsterdam-Vlissingen there should be at least one unit that
makes the whole trip. Moreover, it is required that, at any of the four stations
given (Amsterdam, Rotterdam, Roosendaal, Vlissingen) one may either couple
units to or decouple units from a train, but not both simultaneously. Moreover,
one may couple fresh units only to the front of the train, and decouple laid off
units only from the rear. (One may check that these conditions are not met by
all trains in the solution given in Table 4.)

This all causes that the order of the different units in a train does matter,
and that conditions have a more global impact: the order of the units in a
certain morning train can still influence the order in some evening train. This

does not fit directly in the circulation model described above, and requires a
combinatorial extension.
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